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V 1. Introduction

The development of a semi',implicit version of the Shuman-Hovermale (1968)

model required as an intermediate step the formulation of a linearized version

of the model equations. In the present paper, we present certain results derived

by means of those linear equations.

The semi-implicit method is based upon the implicit approximation of

those terms in the model equations which enter into a linear computational

stability analysis for pure gravitational oscillations about an atmosphere at

rest on a nonrotating Earth. The algebraic manipulation of the full equations

necessary to arrive at the appropriate linear equations is omitted here for

the sake of brevity.

The analyses to be presented below lack generality, but they are believed

to be of interest as a first approximation of the structure of the free gravi-

tational modes likely to be found in forecasts made with the Shuman-Hovermale

model. In Office Note 47, we compared the free modes exhibited by four-layer

models written with Phillips' a.coordinate and with ShumanrHovermalets a-system.

The influence of the vertical resolution variation and the significance of the

use of a "tropopause" material surface were noted. In this paper, we deal only

with the Shuman-Hovermale system but attention is focused on the role played

by the special characteristics of this a-system.

2. Method for Determining Eigenfunctions

The linearized, vertically discretized system of equations governing

the proposed semi-implicit version of the Shuman~Hovermale model may be reduced

to the following matrix form provided that the Coriolis term is omitted



~* *:3 : 
together with consideration of the sphericity of the Earth,

A q = 0 (1)

The matrix A is the following 7x7..array in which c stands for phase

speed of the perturbation wave solution:

c(all- c2 ) c a13 a : 14 a a6 a7
el4 a!15 16 17

ca1 tc(ta2- c2 ) c a23 a24 a a27~~zz 23 ~~ 24 25 26 a 27

c a3 c a32 C(a33- c2 ) a34 a35 a37
31 32 33 35 36

41a ca cac a 4 4 +2 
2 a a4 a (2)

a45 46 47

c as1 c a52 c a 53 3c a 5 5+ 6c
2 a5 6- 3c2 a

ca 6 a61 c a62 c a6 5 a64 a6-3c 2 a6+ 6c2 a61 ca 6a a6 4 65, 66 67

c a7 1 c a72 c a7 3 a 74 a75 a7 6 a7 7 + 4c
2

The vector of unknown amplitudes q stands for

w1 w2 w3 w (J

qr= ~l,' 29 3, ik- ik' ik' ik(3)

The coefficients aij appearing in (2) are complicated functions of the basic

state thermodynamic structure. The parameter B is a simple function of the

basic state pressures

90- Pc PT= (4)
Pc

PG is the basic state surface pressure

T is the basic state t"tropopause" pressure

pc is the depth of the boundary layer in pressure.
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Before describing the method used to determine the eigenvalues c for

which det A vanishes, we may note a special property of the coefficients aij

The coefficients

aij ' (i = 1,2,...,7; j = 1,2,3)

are determined solely through combinations of the basic state mass distribution

without clear dependence upon the limiting properties of the dry-adiabatic

lapse rate.

On the other hand, the coefficients

a. (i = 1,2,...,7; j = 4,5,6,7)
aij

which appear as coefficients of the t"vertical" velocity variables are all

dependent upon the static stability with reference to dry-adiabatic processes.

In particular, if each layer in each of the a domains were to have a dry

adiabatic temperature distribution, these coefficients would vanish identically.

The method used to determine the eigenvalues c was based on the existence

of seven distinct, positive real valued roots of the equation

det A = 0 (5)

By inserting values for c, in a prescribed range, the determinant was evaluated.

Changes in algebraic sign of the determinant between consecutive values of c

were used to isolate the roots of (5). An interpolation process was used to

locate the root to a satisfactory precision.

Once the roots were determined, the calculated eigenvalue was /

utilized to determine the eigenvector associated with it. To this end, we J

used the assumption that 7r, the first component of the eigenvector, had value v

unity. In all cases, this provedto be satisfactory.
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Since the eigenvectors q are not readily interpreted, we transformed

them into a more usual set. The individual derivative of pressure denoted by

m = dp (6)

may be related to the components of q as follows:

1
= i-1 (7)

+ I

2 = W4W2/C + .5 72

3 2

=W (V3 -pc)W3/c + 3/3 (8)
(s)

5 = C3-Pc)w2/c + 2X3/3

-p)W /c + 113
6 3 PcWl/ 3

7 : 1 + 12 + 13

w1 is the amplitude of Pe, where Pe is the perturbation pressure at the

base of the isentropic layer.

12 is the amplitude of pT-p', where PT is the perturbation pressure at the

"tropopause."

113 is the amplitude of pG7PT, where PG is the perturbation pressure at the

ground. The same parameters with curly overbars imply the basic state

value. The quantities w. stand for ~j/(ik) with i = VI and k the
JJ

horizontal wave number. The subscript 4 is assigned to & in the mid-

stratosphere. The other subscripts apply for & in the troposphere with

the & closest to the ground.
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In the subsequent discussion, we shall use the w depiction of the

eigenfiAnctions. One might equally well have constructed the eigenfunctions

in terms of the divergence of the horizontal wind or of the temperature.

3. Results

3.1 Standard Atmosphere 1)

The U.S. Standard Atmosphere was used to specify the thermal

structure of the basic state. The tropopause level was chosen to be at 260 mb

and the surface pressure at 1000 mb. These are not standard, but agree with

the levels suggested in Shuman and Hovermale (1968).

Table 1 indicates the temperature and pressure at the midpoints

of the seven relevant layers of the model.

p mb 975 835 605 375 220 140 50

T °K 286.0 277.7 261.3 238.5 216.6 216.6 179.7

Table 1. Standard Atmosphere #1.

Table 2 gives the eigenfunction distribution of X for each of

the seven free modes. The functions are shown graphically in figures la and lb.

The phase speed of each free mode is indicated in m sec- 1. The t's apply at

the base of each layer in the model.
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0

-c[m so'] 3.4 11.5 20.9 31.8 94.3 131.6 329.9

o =I1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Ts=.5 -2.4 -2.7 -3.5 -4.9 -.4 1.4 2.5

C X;s=l.0 3.6 3.2 2.1 -.3 -1.5 1.5 3.8

CT=/1/3 -29.9 -20.1 2.6 18.3 -.8 .8 5.6

OaT=2.3 117.8 43.7 2.6 17.3 J .4 .2 7.2

aT=i.0 -236.6 19.0 .3 2.9 +.0 -.4 8.8

"B=i.0 1.1 -.7 -.0 -1.0 .2 -.5 9.2

Table 2. Tabulation of eigenfunctions X for standard atmosphere 1, phase

speed c given in m/sec. Level at which X applies indicated by

a value. ai=l is base of isentropic layer.. s=l is at "tropo-

pause." aT=l. at top of boundary layer. oB=l. at ground.

It should be noted that the temperature used at 50 mb was obtained by

linearly extrapolating the potential temperatures in the stratospheric layers.

This is an approximation of the method used in the operational version of the

Shuman HO6vermale model. In Appendix A, we give the results obtained by

inserting at 50 mb the approximately isothermal temperature implied by the

actual standard atmosphere. The result only modified the phase speeds of the

three fastest modes.

In the course, of effecting this computation, we inadvertently inserted

a temperature of 64°K on the 50 mb level. The calculation was affected to the

extent that the second fastest mode developed a complex valued phase speed.
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A check indicated that this was due to the implication of a super-

autoconvective distributioniof density between the isentropic cap and the

upper stratospheric layer. The careful selection of the temperature in the

isentropic cap is indicated, otherwise a physical instability may be excited.

On the other hand, the insertion of too large a temperature will yield an

undesirable increase in the phase speed of the fundamental modes.

3.2 Behavior of Eigenfunction for various stratifications

It may be noted that the eigenfunction corresponding to the phase

speed 20.9 m sec- 1 is somewhat anomalous. Based on the Sturmian theory, one

would have anticipated that this eigenfunction would exhibit four internal

nodal points. It shows only three.

To investigate this question, we ran a series of idealized

stratifications of the basic state through the computer program. We constructed

part linear and part isothermal lapse rates with cross overs at various levels

of the model. The mode with the anomally was isolated for study.

In figure 2, the results show that:in the ISOTHERMAL case the

mode has the expected four internal nodes. In the LINEAR lapse rate case, the

mode has just three zeroes. It will be seen from the figure that the transition

occurs between cases (3) and (4). This implies that one zero is lost when the

entire troposphere of the model becomes characterized by a linear lapse rate.

We are unable to advance a cogent rationale for this behavior.

It has been suggested that the peculiarity must be associated with the passage

from differential to finite difference form of the equations. The question is





W a subtle one of minor significance at present. If the eigenfunctions form a

complete set for the difference equations, then the anomalous behavior is

irrelevant. The further study of this question is beyond the scope of our

current investigations.

3.3 Super-Adiabatic Lapse Rates

If the atmosphere is stratified in such a fashion that the lapse

rate of temperature exceeds the dry-adiabatic rate, one would expect internal

gravity waves to be unstable. (c.f. Haltiner, 1971, p. 30)

As mentioned earlier, only the coefficients of w in equation (1) are explicitly

dependent upon the static stability. The lapse rate 15 °K/KM was used to

specify the temperatures at the several layers of the model in order to examine

the response of the model. The pressures and temperatures used are given in

Table 4. In Table 5 the eigenvalues and eigenfunctions are presented. Since

we tried only real values of the phase speed c in the frequency equation (5), we

do not obtain all seven modes. Four of the modes are presumably unstable.

p mb 975 835 605 375 220 140 50

T °K 284.2 265.6 230.7 187.1 148.2 121.6 77.5

Table 4. Super-adiabatic basic state.
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Table 5. Eigenfunctions X obtained for superadiabatic lapse rate.

See Table 2 caption for other notations.

Two of the retained modes are readily identified--one is the external

mode, the other is the highest internal mode. The latter is markedly different

in the amplitude of its structure from previously given forms. It now

possesses a maximum amplitude at upper levels. The third of the retained

modes is anomalous.

It had been anticipated that the results of this calculation would

be more readily interpreted than is now apparent. They are presented here for

comment by others.

3.4 Isothermal Stratification and Tropopause Level

The isothermal lapse rate is a particularly simple one for analysis.

We calculated the eigenvalues and eigenfunction for a set of isothermal basic

states with temperature in the range, 250 to 290 OK. This calculation was

12

c m sec ~1 9.5 34.5 298.8

I= 1. 1.0 1.0 1.0

as = 1/2 -1.1 -.8 2.7

us = 1. .3 -2.2 4.5

UT = 1/3 -.4 .4 7.2

aT = 2/3 .1 .3 10.0

oT = 1. .1 .1 13.0

QTB =1. 0. -0. 13.7
....... ..... . ........



repeated with a modification of the vertical resolution of the model. The

pressures at the midpoint of the regular and modified layers of the model

are given in Table 6.

Regular 975 835 605 375 220 140 50

Modified 975 873 720 566.7 392.5 197.5 50

Table 6. Pressure in mb at midpoint of model layers. Modified model

has "tropopause" at 490 mb; regular model has tropopause at

260 mb.

The eigenfunctions do not vary their shape as the temperature is varied.

Different eigenfunctions are obtained for the different resolutions. The

eigenfunctions are shown in Figures 3a and 3b. The phase speeds of each

mode are given as a function of the isothermal temperature for both modified

and regular tropopause pressures. The regular tropopause is at 260 mb in

the basic state; the modified level is at 490 mb.

With regard to the phase speeds, one observes the anticipated

increase of phase speed with increased isothermal temperature. The large

value of the zero, or external, mode phase speed is surprising (cf. Office

Note 47). It is likely that this is accountable for by the presence of the

isentropic layer in the present analysis. The possibility that such large

phase speeds must be accounted for in the linear computational stability

criterion cannot be dismissed without examination of the thermal structures

used in the model integrations, especially in low latitudes.
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One may also note that the influence of a "lower tropopause"

is to increase the phase speed of modes 0 and 1 and decrease those of the

higher modes.

TEMP MOT- A 5 A 3- 9 1 N

Table 7: Phase speeds of different modes of isothermal basic state.

The form of the eigenfunctions when plotted versus pressure,

as in Figs. 3a and 3b, is considerably different for the two choices of

"tropopause" pressure. One may regard this as a vertical truncation error.

Since in practice, the tropopause pressure does vary (although generally by

a smaller amount), one may anticipate the development of computational

noise analogous to that noted when horizontal truncation error varies

sharply in response to abrupt variations in mesh size.

A final point may be noted with reference to Figs. 3a and 3b.

The possibility of utilizing normal mode analysis as a diagnostic tool (cf.

Dickinson and Williamson, 1971 and 1972) may be impossible in the Shuman

Hovermale a system and even in the Phillips a system, owing to the significant

variation in the eigenfunctions. Further investigation of this question is

required.
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250 REG 5.4 18.4 25.6 50.1 125 178 346

_ _ ~MOD 3.9 9.8 20.4 34.5 110 200 373

270 REG 5.7 19.1 26.6 52.0 130 185 359

MOD 4.1 10.2 21.2 35.8 114 208 388

290 REG 5.9 19.8 27.5 53.9 135 192 372

MOD 4.2 10.6 22.0 37.1 118 216 402
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-Appendix A. Eigenfunctions. for standard atmosphere with 50 mb temperature

obtained from U.S. standard atmosphere.

Table Al.

c m sec- 1 3.4 11.5 21.5 31.8 103.2 164.9 333.1

o =1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Ts = .5 -5.0 -5.6 -7.3 -10.2 -2.7 1.0 2.3

s = 1 6.9 6.1 3.9 -5 -5.1 .8 3.4

T = 1/3 -61.4 -42.8 5.1 35.0 -3.0 .4 4.9

AT = 2/3 240.0 91.5 5.0 33.1 -1.2 - .0 6.4

CT = 1 -537.3 40.2 .6 5.5 .5 - .5 7.7

B = 1 2.2 -1.4 - .1 -1.8 .8 - .6 8.0

Table A2.

pmb T OK

50 217.2

140 216.6

220 216.6

375 238.5

605 261.3

835 277..7

975 286.0


